Full-Scale Fatigue Testing of a Wind Turbine Blade in Flapwise Direction and Examining the Effect of Crack Propagation on the Blade Performance

نویسندگان

  • Othman Al-Khudairi
  • Homayoun Hadavinia
  • Christian Little
  • Gavin Gillmore
  • Peter Greaves
  • Kirsten Dyer
چکیده

In this paper, the sensitivity of the structural integrity of wind turbine blades to debonding of the shear web from the spar cap was investigated. In this regard, modal analysis, static and fatigue testing were performed on a 45.7 m blade for three states of the blade: (i) as received blade (ii) when a crack of 200 mm was introduced between the web and the spar cap and (iii) when the crack was extended to 1000 mm. Calibration pull-tests for all three states of the blade were performed to obtain the strain-bending moment relationship of the blade according to the estimated target bending moment (BM) which the blade is expected to experience in its service life. The resultant data was used to apply appropriate load in the fatigue tests. The blade natural frequencies in flapwise and edgewise directions over a range of frequency domain were found by modal testing for all three states of the blade. The blade first natural frequency for each state was used for the flapwise fatigue tests. These were performed in accordance with technical specification IEC TS 61400-23. The fatigue results showed that, for a 200 mm crack between the web and spar cap at 9 m from the blade root, the crack did not propagate at 50% of the target BM up to 62,110 cycles. However, when the load was increased to 70% of target BM, some damages were detected on the pressure side of the blade. When the 200 mm crack was extended to 1000 mm, the crack began to propagate when the applied load exceeded 100% of target BM and the blade experienced delaminations, adhesive joint failure, compression failure and sandwich core failure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Multi-Point Excitation Fatigue Testing Method for Wind Turbine Rotor Blades

Abstract: Wind turbine blades have to withstand the rigorous test of 20–25 years of service. Fatigue testing is an accurate method used to verify blade reliability. Multi-point excitation could better fit the fatigue damage distribution, which reduces the power output of a single exciter and saves testing energy consumption. The amplitude, phase, and frequency characteristics of the fatigue tes...

متن کامل

Modal Testing and Finite Element Analysis of Crack Effects on Turbine Blades

The study of vibration response of a turbine blade helps to detect the crack presence in the blade which alters its dynamic characteristics. The change is characterized by changes in the modal parameters associated with natural frequencies. In this paper, study of vibration response is made for turbine blade in the presence of a crack like defect. Turbine blade is initially assumed as a cantile...

متن کامل

Metallurgical fatigue failure analysis of the brazed steam turbine blade

In this paper, failure mechanism of a 17th stage blade of an 82.5 MW steam turbine that caused damage to the internal turbine compartment and the adjacent blade equipment has been studied. In order to determine the cause of failure and prevent similar events, various metallurgical and mechanical investigations including chemical composition analysis, metallography and microstructural analysis, ...

متن کامل

Metallurgical fatigue failure analysis of the brazed steam turbine blade

In this paper, failure mechanism of a 17th stage blade of an 82.5 MW steam turbine that caused damage to the internal turbine compartment and the adjacent blade equipment has been studied. In order to determine the cause of failure and prevent similar events, various metallurgical and mechanical investigations including chemical composition analysis, metallography and microstructural analysis, ...

متن کامل

An Outrun Competition of Corrosion Fatigue and Stress Corrosion Cracking on Crack Initiation in a Compressor Blade

First row rotating blades of four axial-flow compressors were prematurely fractured. Previous investigations showed that the site atmosphere contains corrosive compounds which lead to an increase in possibility of pitting on the blades. It was also revealed that the crack was originated from two corrosion pits. Thus, this work is conducted to ascertain which of fatigue or stress corrosion crack...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017